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Abstract 

Topological indices are graph invariants. In chemical graph theory, a molecule can be modeled by a graph 

by replacing atoms by the vertices and bonds by the edges of this graph. In this paper we study the Szeged 

index and Revised Szeged index of the total graph of a ladder graph and total graph of a wheel graph. 

 

Introduction 

A topological graph index, also called a molecular descriptor, is a mathematical formula that can be 

applied to any graph which models some molecular structure. In the graph-theoretic sense topological 

index is a graph invariant. The interest in topological indices is mainly related to their use in non-empirical 

quantitative structure-property relationships (QSPR) and quantitative structure-activity relationships 

(QASR). 

Throughout this paper we consider simple, finite, undirected and connected graph G = (V(G), E(G)). The 

number of vertices of G is called order of G. We give a summary of definitions which are useful in this 

paper. For that we use “A first look at graph theory" by John Clark and Holton Derek Allan [1]. 

 

Definition 1.  Capobianco M. and Molluzzo J. C. [2] introduced the concept of total graph. The total graph 

of graph G = (V(G), E(G)) is denoted by T(G). The V(T(G)) = V(G) ∪ E(G) and two vertices are 

adjacent in T(G) if they are either adjacent in G or incident in G. 
Definition 2.  The ladder graph Ln is a cartesian product of path graph Pn and path graph p2. 

Definition 3.  The wheel graph Wn+1 is obtained by joining one apex vertex to every vertex of cycle Cn. 

Definition 4.  Distance between any pair (u, v) of vertices of graph G = (V(G), E(G)) is denoted by 

d(u, v) and is defined as the length of one of the shortest paths from u to v. 

Neighborhood of any vertex u ∈ V(G) is set of all the vertices adjacent to u in G. 

Definition 5.  Let G = (V(G), E(G)) be a graph. Diameter of G is denoted by diam(G) and is defined as 

diam(G) = maxu,v∈V(G)d(u, v). 

Definition 6.  Let G = (V(G), E(G)) be a graph and let e = uv ∈ E(G). Consider following three sets: 

N1(e) = {w ∈ V(G) | d(u, w) < d(v, w)}; N2(e) = {w ∈ V(G) | d(v, w) < d(u, w)}; and N0(e) = {w ∈
V(G) | d(u, w) = d(v, w)}. Also, for s ∈ {0,1,2}, ns(e) = |Ns(e)|. 
The Szeged index of graph G is denoted by Sz(G) and is defined as  

Sz(G) = ∑ n1(e)n2(e)

e∈E(G)

. 

The Szeged index of a graph G is a topological index related to the Wiener index. Which is introduced by 

Iván Gutman [3]. Simić, S., Gutman, I., and Baltić, V. [4] proved that for every connected graph G(with 
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at least two vertices), Sz(G) ≥ W(G), with equality holds if and only if each block of G is a complete 

graph. A block of a graph G is a maximal connected subgraph of a graph G that has no articulation/cut 

vertex. The trees with minimal and maximal Szeged indices are precisely those which have minimal and 

maximal Wiener indices. Theorem related to minimal and maximal Szeged index is stated in [5]  which 

is as follows: Let K1,n−1 and Pn be the n −vertex star and path, respectively and Tn is a tree other than 

K1,n−1 and Pn, then Sz(K1,n−1) < Sz(Tn) < Sz(Pn). 

Definition 7.  Revised Szeged index of a graph G is denoted by Sz∗(G) and defined as 

Sz∗(G) = ∑ (n1(e) +
n0(e)

2
) (n2(e) +

n0(e)

2
)

e∈E(G)

. 

In 2002, Randić [6] proposed modification of the Szeged index and called the resulting index as a revised 

Szeged index. M. Aouchiche and P. Hansen [7] proved that if G is connected graph on n vertices with m 

edges. Then Sz∗(G) ≤
n2m

4
. 

 

Main Results 

Total graph of ladder graph: T(Ln) 

Throughout this paper we will consider T(Ln) as follows: 

● Vertex set V(T(Ln)) = V1(T(Ln)) ∪ V2(T(Ln)) ∪ V3(T(Ln)) where,V1(T(Ln)) = {1,2,3 ⋯ ,2n}, 

V2(T(Ln)) = {2n + 1,2n + 2, ⋯ ,4n − 2} and V3(T(Ln)) = {4n − 1,4n, ⋯ ,5n − 2}. 

● Edge set E(T(Ln)) = ⋃
8

i=1 Ei(T(Ln)), where each 𝐸𝑖 defined as follows: 

o E1(T(Ln)) = {(x, x + n)|1 ≤ x ≤ n}, 

o E2(T(Ln)) = {(x, x + 1), (n + x, n + x + 1)|1 ≤ x ≤ n − 1}, 

o E3(T(Ln)) = {(x, 4n + x − 2), (n + x, 4n + x − 2)|1 ≤ x ≤ n}, 

o E4(T(Ln)) = {(2n + x, 4n + x − 2), (3n + x − 1,4n + x − 2)|1 ≤ x ≤ n − 1}, 

o E5(T(Ln)) = {(2n + x, 4n + x − 1), (3n + x − 1,4n + x − 1)|1 ≤ x ≤ n − 1}. 

o E6(T(Ln)) = {(2n + x, 2n + x + 1), (3n + x − 1,3n + x)|1 ≤ x ≤ n − 2} and 

o E7(T(Ln)) = {(2n + x, x), (3n + x − 1, x + n)|1 ≤ x ≤ n − 1}. 

o E8(T(Ln)) = {(2n + x, x + 1), (3n + x − 1, x + n + 1)|1 ≤ x ≤ n − 1}. 
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Lemma 1.  Let T(Ln) be the total graph of ladder graph as described above then 

1. d(x, x + m) = m = d(n + x, n + x + m) for x = 1,2, . . . , n − 1 and m = 1,2, . . . , n − x. 

2. d(n + x, 3n − 1 + y) = d(x, 2n + y) = {
y − x + 1     for   y ≥ x
x − y             for   y < x

  

for x = 1,2, . . . , n and y = 1,2, . . . , n − 1 

3. d(x, n + y) = |y − x| + 1 

4. d(x, 3n − 1 + y) = {
d(3n − 1 + y, n + y) + d(n + y, x)                for    x ≤ y

 d(3n − 1 + y, n + y + 1) + d(n + y + 1, x)    for x > y
 

5. d(n + x, 2n + y) = d(n + x, x) + d(x, 2n + y) 

6. d(x, 4n − 2 + y) = |x − y| + 1 = d(n + x, 4n − 2 + y) 

7. d(3n − 1 + x, 4n − 2 + y) = d(2n + x, 4n − 2 + y) = {
y − x           for    x < y
x − y + 1     for x ≥ y

  

8. d(2n + x, 3n − 1 + y) = {
d(2n + x, 2n − 1 + y) + 2                   for        y ≥ x

d(3n − 1 + y, 3n − 2 + x) + 2           for        y < x
. 

Proof. Consider n blocks of T(Ln). For 2 ≤ i ≤ n − 2, ith block contains five vertices {i, n + i, 2n +
i, 4n − 2 + i, 3n − 1 + i}, 1st and (n − 1)th block contains four vertices {1, n + 1,2n + 1,4n − 2 +
1,3n − 1 + 1} and three vertices {n − 1,2n, 5n − 2} respectively. Each block contains edges of T(Ln) 

whose both ends lie in the vertex set of respective blocks. Now edges between ith and (i + 1)th block are 
(i, i + 1), (n + i, n + i + 1), (2n + i, i + 1), (2n + i, 2n + i + 1), (3n − 1 + i, n + i + 1), (3n − 1 +
i, 3n − 1 + i + 1), (2n + i, 4n − 2 + i + 1), (3n − 1 + i, 4n − 2 + i + 1). Also there are no direct edges 

from ith block vertices to jth block vertices if |i − j| > 1. Now consider a graph G as V(G) =
{B1, B2, … , Bn} where Bi is a block as described above for all 1 ≤ i ≤ n.  Bi adjacent to Bj in G if and only 

if there exists vi ∈ Bi and vj ∈ Bj such that vi is adjacent to vj in T(Ln).From this we can see that G is a 

path graph on n vertices. 

Therefore if 1 ≤ i < j ≤ n then shortest path from Bi to Bj in G is specifically Bi, Bi+1, … Bj−i, Bj 

 ◻ 

Theorem 1.  Let Ln be the ladder graph and T(Ln) be the total graph of ladder graph then  

Sz(T(Ln)) =
1

3
(92n3 − 171n2 + 178n − 96). 

Proof. Let e = (x, n + x) ∈ E1(T(Ln)) for some x ∈ {1,2, … , n}. From Lemma 1 we have, N1(e) =

{1,2, … n, 2n + 1,2n + 2, … ,3n − 1}, N2(e) = {n + 1, n + 2, … ,2n, 3n, 3n + 1 … ,4n − 2} and N0(e) =
{4n − 1,4n4n + 1, ⋯ ,5n − 2}. Therefore n1(e) = 2n − 1 = n2(e). Therefore 

∑ n1(e)n2(e)

e∈E1(T(Ln))

= n(2n − 1)2 
(1) 

Let e = (x, x + 1) or e = (n + x, n + x + 1) from E2(T(Ln)) for some x ∈ {1,2, … , n − 1}. From 1 we 

have,  

∑ n1(e)n2(e)

e∈E2(T(Ln))

= ∑(5k + 3)(5(n − (k + 1)) − 2).

n−2

k=0

 

Therefore 

∑ n1(e)n2(e)

e∈E2(T(Ln))

=
(n − 1)(25n2 − 35n + 24)

3
 (2) 

Let e = (x, 4n + x − 2) or e = (n + x, 4n + x − 2) from E3(T(Ln)) for some x ∈ {1,2, … , n}. From 

Lemma 1 we have, N1(e) = {1,2, ⋯ , n},  N2(e) = {3n, 3n + 1, ⋯ ,4n − 2} ∪ {4n + x − 2} and N0(e) =
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{2n + 1,2n + 2, ⋯ ,3n − 1} ∪ ({4n − 1,4n, ⋯ ,5n − 2} − {4n + x − 2}) ∪ {n + 1, n + 2, ⋯ 2n}. 
n1(e) = n = n2(e). Therefore 

∑ n1(e)n2(e)

e∈E3(T(Ln))

= 2n3 
(3) 

Let e = (2n + x, 4n + x − 2) or e = (3n + x − 1,4n + x − 2) from E4(T(Ln)) for some z ≤ x ≤ n − 1. 

For e = (2n + x. 4n + x − 2), From Lemma 1 we have, N1(e) = {2n + x, 2n + x + 1, ⋯ ,3n − 1} ∪
{4n + x − 1,4n + x, ⋯ ,5n − 2} ∪ {x + 1, x + 2, ⋯ , n},  N2(e) = {4n + x − 2} ∪ {3n, 3n + 1, ⋯ ,3n −
1 + x} ∪ {n + 1, n + 2, ⋯ , n + x} and N0(e) = {1,2, ⋯ , x} ∪ {2n + 1,2n + 2, ⋯ 2n + x} − {2n + x} ∪
{n + 1 + x, n + x + 2, ⋯ ,2n} ∪ {3n + x, 3n + x + 1, ⋯ ,4n − 2} ∪ {4n − 1,4n, ⋯ 4n + x − 2} − {4n +
x − 2}. Therefore 

∑ n1(e)n2(e)

e∈E4(T(Ln))

= 2 ∑ 3((2n − 1)k − 2k2 + n)

n−1

i=1

= n(n − 1)(2n + 5) (4) 

Let e = (2n + x, 4n + x − 1) or e = (3n + x − 1,4n + x − 1) from E5(T(Ln)) for some 1 ≤ x ≤ n − 1. 

Which is similar as above therefore 

∑ n1(e)n2(e)

e∈E5(T(Ln))

= n(n − 1)(2n + 5) 
(5) 

Let e = (2n + x, 2n + x + 1) or e = (3n + x − 1,3n + x) from E6(T(Ln)) for some 1 ≤ x ≤ n − 2.For 

e = (2n + x, 2n + x + 1), From Lemma 1 we have, N1(e) = {2n + 1,2n + 2, ⋯ ,2n + x} ∪ {1,2, ⋯ , x} ∪
{n + 1. n + 2, ⋯ , n + x} ∪ {3n + x − 1,3n + x − 2, ⋯ ,3n} − {3n + x − 1} ∪ {4n − 1,4n, ⋯ ,4n + x −
2},  N2(e) = {2n + x + 1,2n + x + 2, ⋯ ,3n − 1} ∪ {x + 2, x + 3, ⋯ , n} ∪ {n + x + 2, n + x +
3, ⋯ ,2n} ∪ {3n + x, 3n + x + 1, ⋯ ,4n − 2} − {3n + x} ∪ {4n + x, 4n + x + 1, ⋯ 5n − 2} and N0(e) =
{x + 1,4n + x − 1, n + x + 1,3n + x − 1,3n + x}. Therefore 

∑ n1(e)n2(e)

e∈E6(T(Ln))

= ∑(25(n − 1)k − 25k2 + 6)

n−2

k=1

=
(n − 2)(25n2 − 55n + 36)

3
 

(6) 

Let e = (x, 2n + x) or e = (x + n, 3n + x − 1) from E7(T(Ln)) for some 1 ≤ x ≤ n − 1.For e =
(x, 2n + x), From Lemma 1 we have, N1(e) = {1,2, ⋯ , x} ∪ {n + 1, n + 2, ⋯ , n + x},  N2(e) = {2n +
x, 2n + x + 1, ⋯ ,3n − 1} ∪ {4n − 1 + x, ⋯ ,5n − 2} ∪ {3n + x, 3n + x + 1, ⋯ ,4n − 2} and N0(e) =
{x + 1, x + 2, ⋯ n} ∪ {4n − 1, ⋯ 4n + x − 2} ∪ {n + x + 1, ⋯ 2n} ∪ {3n, 3n + 1, ⋯ ,3n + x − 1} ∪
{2n + 1,2n + 2, ⋯ ,2n + x} − {2n + x}. Therefore 

∑ n1(e)n2(e)

e∈E7(T(Ln))

= 2 ∑(2k(3n − 1) − 6k2)

n−1

k=1

= 2n2(n − 1) (7) 

Let e = (2n + x, x + 1) or e = (n + x + 1,3n + x − 1) from E8(T(Ln)) for some 1 ≤ x ≤ n − 1. Which 

is similar as above therefore 

∑ n1(e)n2(e)

e∈E8(T(Ln))

= 2n2(n − 1) 
(8) 

Therefore, after adding up these 8 equations, we get, 

Sz(T(Ln)) =
92n3 − 171n2 + 178 − 96

3
. 

 ◻ 



 
 

     153                                                        JNAO Vol. 15, Issue. 2, No.2 :  2024                              
Corollary 1.  Let Ln be the ladder graph and T(Ln) be the total graph of ladder graph then  

Sz∗(T(Ln)) =
(n − 1)(149n2 − 61n − 26)

2
. 

Proof. For E1(T(Ln)), from Theorem 1 we have, 

∑ (n1(e) +
n0(e)

2
) (n2(e) +

n0(e)

2
)

e∈E1(T(Ln))

=
n

4
(5n − 2)2. (1) 

For E2(T(Ln)), from Theorem 1 we have, 

∑ (n1(e) +
n0(e)

2
) (n2(e) +

n0(e)

2
)

e∈E2(T(Ln))

=
(n − 1)(25n2 − 5n + 6)

3
. (2) 

For E3(T(Ln)), from Theorem 1 we have, 

∑ (n1(e) +
n0(e)

2
) (n2(e) +

n0(e)

2
)

e∈E3(T(Ln))

=
n

4
(5n − 2)2. (3) 

For E4(T(Ln)), from Theorem 1 we have, 

∑ (n1(e) +
n0(e)

2
) (n2(e) +

n0(e)

2
)

e∈E4(T(Ln))

=
(n − 1)(136n2 − 89n + 18)

12
 (4) 

For E5(T(Ln)), from Theorem 1 we have, 

∑ (n1(e) +
n0(e)

2
) (n2(e) +

n0(e)

2
)

e∈E5(T(Ln))

=
(n − 1)(136n2 − 89n + 18)

12
 (5) 

For E6(T(Ln)), from Theorem 1 we have, 

∑ (n1(e) +
n0(e)

2
) (n2(e) +

n0(e)

2
)

e∈E6(T(Ln))

=
(n − 2)(50n2 + 40n − 63)

6
. (6) 

For E7(T(Ln)), from Theorem 1 we have, 

∑ (n1(e) +
n0(e)

2
) (n2(e) +

n0(e)

2
)

e∈E7(T(Ln))

=
(n − 1)(136n2 − 89n + 18)

12
 (7) 

For E8(T(Ln)), from Theorem 1 we have, 

∑ (n1(e) +
n0(e)

2
) (n2(e) +

n0(e)

2
)

e∈E8(T(Ln))

=
(n − 1)(136n2 − 89n + 18)

12
 (8) 

Therefore, after adding up 8 equations, we get, 

Sz∗(T(Ln)) =
(n − 1)(149n2 − 61n − 26)

2
. 

◻ 

Total graph of wheel graph: T(Wn+1) 

Let Wn+1 be the wheel graph with n + 1 vertices out of these n + 1 vertices 1 vertex is apex vertex and 

other n vertices are on rim. We labeled n + 1 vertices V(Wn+1) = {1,2, … n + 1} as apex vertex labeled 

n + 1 and rim vertices labeled in such a way that E(Wn+1) = {(n + 1, x)|1 ≤ x ≤ n} ∪ {(x, x +
1), (n, 1)|1 ≤ x ≤ n − 1}. 
Total graph of wheel graph T(Wn+1) has 3n + 1 vertices. Consider a partition of these 3n + 1 vertices 

into 4 non-empty disjoint sets as V1(T(Wn+1)) = {1,2, … , n}, V2(T(Wn+1)) = {n + 1}, V3(T(Wn+1)) =
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{n + 2, n + 3 … ,2n + 1} and V4(T(Wn+1)) = {2n + 2,2n + 3, … ,3n + 1}. Therefore V(T(Wn+1)) =

V1 ∪ V2 ∪ V3 ∪ V4. Consider a partition of edge set E(T(Wn+1)) of T(Wn+1) into 7 non-empty disjoints 

sets as E(T(Wn+1)) = ⋃6
i=1Ei(T(Wn+1)). Where 

● E1(T(Wn+1)) = {(n + 1, x): 1 ≤ x ≤ n} 

● E2(T(Wn+1)) = {(x, x + 1), (n, 1): 1 ≤ x ≤ n − 1} 

● E3(T(Wn+1)) = {(x, n + 1 + x), (n + 1 + x, x + 1), (n, 2n + 1), (2n + 1,1): 1 ≤ x ≤ n − 1} 

● E4(T(Wn+1)) = {(x, 2n + x + 1), (2n + x + 1, n + 1): 1 ≤ x ≤ n} 

● E5(T(Wn+1)) = {(n + x + 1,2n + x + 1), (n + x + 1,2n + 1 + x + 1): 1 ≤ x ≤ n}, where  3n +

2 = 2n + 2   

● E6(T(Wn+1)) = {(2n + x, 2n + y): 2 ≤ x, y ≤ n + 1, x ≠ y} 

● E7(T(Wn+1)) = {(n + 1 + x, n + 1 + x + 1)|1 ≤ x ≤ n} 

 

Lemma 2.  Let T(Wn+1) be the graph as described above then 

1. For x ∈ V1(T(Wn+1)), d(x, n + 1) = 1. 

2. For x, y ∈ V1(T(Wn+1)), d(x, y) = {1  for |x − y| = 1 or n − 1 2  for |x − y| ≥ 2.  

3. For x, y ∈ {1,2, ⋯ n}, d(x, 2n + y) = {1  for x = y 2  for x ≠ y  
4. For x ∈ V4(T(Wn + 1)), d(x, n + 1) = 1. 

5. For x, y ∈ V4(T(Wn+1)), d(x, y) = 1. 

6. For x, y ∈ {2,3, ⋯ n + 1}, d(n + x, 2n + y) = {1  for x = y 2  for x ≠ y  

7. For x ∈ V3(T(Wn+1)), d(x, n + 1) = 2. 

8. For 1 ≤ x, y ≤ n, 

 d(x, n + 1 + y) = {

1                                 for |x − y| = 0,1, n − 1 and (x, y) ≠ (n, 1)

 2        for |x − y| = 2, n − 2,  and (x, y) = (n, 1), (x, y) ≠ (n, 2)

3                               for 3 ≤ |x − y| < n − 2,  and (x, y) = (n, 2)
 

9. For 1 ≤ x, y ≤ n, 

 d(n + 1 + x, n + 1 + y) = {

1              for |x − y| = 1, n − 1 

2               for |x − y| = 2, n − 2

3           for 3 ≤ |x − y| < n − 2
 

 

Theorem 2.  Let T(Wn+1) be the total graph of wheel graph Wn+1 then 

Sz(T(Wn+1)) = n(52n − 49). 

Proof. For edges from set E1(T(Wn+1)), e = (n + 1, x). From Lemma 2 we have, N1(e) = {2n + 1 +

y: y ≠ x}⋃{y: 1 < |y − x| < n − 1}⋃{n + 1 + y: 2 < |y − x| < n − 2}⋃{n + 1}, N2(e) = {n + 1 +
y: y = x ory = x − 1}⋃{x} and N0(e) = {x + 1, x − 1, n + 1 + x + 1, n + 1 + x − 2,2n + 1 + x} 

|N0(e)| = n0(e) = 5. Therefore |N1(e)| = n1(e) = 3n − 7 |N2(e)| = n2(e) = 3. Therefore, 

∑ n1(e)n2(e)

e∈E1(T(Wn+1))

= 3n(3n − 7) (1) 

For edges from set E2(T(Wn+1)). From Lemma 2 we have, N1(e) = {x, x − 1,2n + 1 + x, n + 1 + x −

1, n + 1 + x − 2}, N2(e) = {x + 1, x + 2,2n + 1 + x + 1, n + 1 + x + 1, n + 1 + x + 2} and N0(e) =
{y: 2 ≤ |y − x| ≤ n − 2}⋃{2n + 1 + y: y ≠ x, y ≠ x + 1}   ⋃{n + 1 + y: y ≠ x ± 1, y ≠ x ± 2}⋃{n +
1}. Therefore |N1(e)| = n1(e) = 5 = n2(e) = |N2(e)|. Therefore, 
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∑ n1(e)n2(e)

e∈E2(T(Wn+1))

= 25n (2) 

For edges from set E3(T(Wn+1)). For e = (x, n + 1 + x), from Lemma 2 we have, N1(e) = {y: y ≠ x +

1, y ≠ x + 2}, N2(e) = {2n + 1 + x + 1, n + 1 + x, n + 1 + x + 1, n + 1 + x + 2} and N0(e) = {x +
1, x + 2}⋃{2n + 1 + y: y ≠ x}⋃{n + 1 + y: y ≠ x, y ≠ x + 1, y ≠ x + 2}. Therefore |N1(e)| = n1(e) =
n − 1. |N2(e)| = n2(e) = 4. For e = (x + 1, n + 1 + x), (n, 2n + 1), (1,2n + 1), from Lemma 2 we 

have, N1(e) = {y: y ≠ x, y ≠ x − 1}⋃{n + 1}, N2(e) = {2n + 1 + x, n + 1 + x, n + 1 + x − 1, n + 1 +
x − 2} and N0(e) = {x − 1, x − 2}⋃{2n + 1 + y: y ≠ x + 1}⋃{n + 1 + y: y ≠ x, y ≠ x − 1, y ≠ x − 2}. 

Therefore |N1(e)| = n1(e) = n − 1, |N2(e)| = n2(e) = 4. Therefore 

∑ n1(e)n2(e)

e∈E3(T(Wn+1))

= 8n(n − 1) 
(3) 

For edges from set E4(T(Wn+1)), from Lemma 2 we have, N1(e) = {x, x + 1, x − 1}, N2(e) = {2n + 1 +

y: 1 ≤ y ≤ n}⋃{n + 1 + y: y ≠ x, y ≠ x ± 1, y ≠ x − 2} and N0(e) = {y: y ≠ x, y ≠ x ± 1}⋃{n + 1 +
x, n + 1 + x − 1, n + 1 + x + 1, n + 1 + x − 2, n + 1}. Therefore |N1(e)| = n1(e) = 3 and |N2(e)| =
n2(e) = 2n − 4. Therefore, n1(e)n2(e) = 6(n − 2). For e = (2n + x + 1, n + 1) from Lemma 2 we 

have,N1(e) = {2n + x + 1, n + 1 + x, n + 1 + x + 1}, N2(e) = {y: y ≠ x}⋃{n + 1} and N0(e) = {2n +
1 + y: y ≠ x}⋃{n + 1 + y: y ≠ x, y ≠ x − 1}⋃{x}. Therefore |N1(e)| = n1(e) = 3 and|N2(e)| =
n2(e) = n. Therefore, 

∑ n1(e)n2(e)

e∈E4(T(Wn+1))

= 3n(3n − 4) 
(4) 

For edges from set E5(T(Wn+1)). For e = (n + 1 + x, 2n + 1 + x), from Lemma 2 we have N1(e) =

{n + 1 + x, n + 1 + x + 1, x + 1}, N2(e) = {n + 1 + y: y ≠ x, y ≠ x ± 1, y ≠ x ± 2}⋃{y: y ≠ x, y ≠ x ±
1, y ≠ x + 2}⋃{n + 1} and N0(e) = {n + 1 + x − 1, n + 1 + x − 2, n + 1 + x + 2, x, x + 2, x − 1,2n +
1 + x + 1}. Therefore |N1(e)| = n1(e) = 3 and |N2(e)| = n2(e) = 3n − 9. For e = (n + 1 + x, 2n +
1 + x + 1), from Lemma 2 we have, N1(e) = {n + 1 + x, x + 1 + x − 1, x},N2(e) = {n + 1 + y: y ≠
x, y ≠ x ± 1, y ≠ x ± 2}⋃{y: y ≠ x, y ≠ x ± 1, y ≠ x + 2} ⋃{2n + 1 + y: y ≠ x}⋃{n + 1}  and N0(e) =
{x + 1, n + 1 + 𝑥 + 1,2𝑛 + 1 + 𝑥, 𝑛 + 1 + 𝑥 + 2, 𝑛 + 1 + 𝑥 − 2, 𝑥 + 2, 𝑥 − 1}. Therefore |𝑁1(𝑒)| =
𝑛1(𝑒) = 3 and |𝑁2(𝑒)| = 𝑛2(𝑒) = 3𝑛 − 9. Therefore, 

∑ 𝑛1(𝑒)𝑛2(𝑒)

𝑒∈𝐸5(𝑇(𝑊𝑛+1))

= 18𝑛(𝑛 − 3) (5) 

For edges from set 𝐸6(T(Wn+1)). For e = (2n + x, 2n + y), where |x − y| = 1 or n − 1, from Lemma 2 

we have N1(e) = {x, n + 1 + x − 1,2n + 1 + x}, N2(e) = {2n + 1 + x + 1, x + 1, n + 1 + x + 1} and 

N0(e) = {2n + 1 + y, y: y ≠ x, y ≠ x + 1}⋃{n + 1 + y: y ≠ x ± 1}⋃{n + 1}. Therefore, |N1(e)| =
n1(e) = 3 = n2(e) = |N2(e)|. For e = (2n + 1 + x, 2n + 1 + z) where ≤ 2|x − z| < n − 1, from 

Lemma 2 we have, N1(e) = {n + 1 + x, x, n + 1 + x − 1,2n + 1 + x}, N2(e) = {2n + 1 + z, z, n = 1 +
z, n + 1 + z − 1} and N0(e) = {y, 2n + 1 + y: y ≠ x, y ≠ z}⋃{n + 1 + y: y ≠ x, y ≠ z, y ≠ x − 1, y ≠
z − 1}⋃{n + 1}. Therefore, |N1(e)| = n1(e) = 4 = n2(e) = |N2(e)|. Therefore, 

∑ n1(e)n2(e)

e∈E6(T(Wn+1))

= n(8n − 15) (6) 

For edges from set E7(T(Wn+1)), from Lemma 2 we have, N1(e) = {n + 1 + x, x + 1 + x − 1, n + 1 +

x − 2, x, x − 1,2n + 1 + x}, and N0(e) = {n + 1 + y: y ≠ x, y ≠ x ± 1, y ≠ x ± 2, y ≠ x + 3}⋃ {y: y ≠
x, y ≠ x − 1, y ≠ x + 2, y ≠ x + 3}⋃{2n + 1 + y: y ≠ x, y ≠ x + 2}⋃{n + 1}. Therefore, |N1(e)| =
n1(e) = 6 = n2(e) = |N2(e)|. Therefore, 
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∑ n1(e)n2(e)

e∈E7(T(Wn+1))

= 36n (7) 

Therefore, after adding up all 7 equations, we get, 

Sz(T(Wn+1)) = n(52n − 49). 

 ◻ 

Corollary 2.  Let Wn+1 be the wheel graph and T(Wn+1) be the total graph of wheel graph then  

Sz∗(T(Wn+1)) =
n(9n3 + 99n2 + 713n − 915)

8
. 

Proof. For E1(T(Wn+1)), from Theorem 2 we get, 

∑ (n1(e) +
n0(e)

2
) (n2(e) +

n0(e)

2
)

e∈E1(T(Wn+1))

=
33n

4
(2n − 3) (1) 

For E2(T(Wn+1)), from Theorem 2 we get, 

∑ (n1(e) +
n0(e)

2
) (n2(e) +

n0(e)

2
)

e∈E2(T(Wn+1))

=
(3n + 1)2n

4
 (2) 

For E3(T(Wn+1)), from Theorem 2 we get, 

∑ (n1(e) +
n0(e)

2
) (n2(e) +

n0(e)

2
)

e∈E3(T(Wn+1))

= 4n(n − 1)(n + 3) (3) 

For E4(T(Wn+1)), from Theorem 2 we get, 

∑ (n1(e) +
n0(e)

2
) (n2(e) +

n0(e)

2
)

e∈E4(T(Wn+1))

=
n

4
(17n2 + 93n − 6n) (4) 

For E5(T(Wn+1)), from Theorem 2 we get, 

∑ (n1(e) +
n0(e)

2
) (n2(e) +

n0(e)

2
)

e∈E5(T(Wn+1))

=
13n

2
(6n − 11) (5) 

For E6(T(Wn+1)), from Theorem 2 we get, 

∑ (n1(e) +
n0(e)

2
) (n2(e) +

n0(e)

2
)

e∈E6(T(Wn+1))

=
(3n + 1)2n

4
+

(3n + 1)2n(n − 3)

8
 (6) 

For E7(T(Wn+1)), from Theorem 2 we get, 

∑ (n1(e) +
n0(e)

2
) (n2(e) +

n0(e)

2
)

e∈E7(T(Wn+1))

=
(3n + 1)2n

4
 (7) 

Therefore, after adding up all 7 equations, we get, 

Sz∗(T(Wn+1)) =
n(9n3 + 99n2 + 713n − 915)

8
. 

 ◻ 

Concluding Remarks and Future Scope 

In this paper we have derived formulae of Szeged index and Revised Szeged index of T(Ln) and T(Wn+1). 

One can obtain formulas for the total graph of Mobius ladder graph, triangular ladder graph and for similar 

graphs. 
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